Описание товара
Additives for silane grafting are a ground-breaking development in PV film technology. The remarkable stability, aging resistance, and efficiency enhancement of these compounds provide substantial benefits over conventional additives. Performance and durability over time are guaranteed by the covalent connection between silane molecules and the polymer matrix. Their simplicity of integration into current production processes and compatibility with different types of PV modules add to their attractiveness. Silane grafting additives hold great potential to revolutionize the photovoltaic industry by enabling enhanced performance and dependability for solar modules across an extensive array of uses.
Передовое оборудование!
Оснащен передовыми производственными линиями и экспериментальным испытательным центром для обеспечения качества продукции.
Сильная техническая сила!
Более 10 опытных технических специалистов по исследованиям и разработкам обеспечивают непрерывные инновации.
Характеристика
Характеристики | Значение | Единица | Метод испытания |
Плотность | 0.87 | г/см3 | ASTM D792 |
Температура плавления | 46 | ℃ | DSC |
Скорость течения расплава(190℃2,16 кг) | 8- 15 | г/10мин | ASTM D1238 |
Содержание функциональных групп | Высокая | wt% | Метод COACE |
Внешний вид | Гранулы | / | / |
Цвет | Прозрачный или белый | / |
Silane grafting additives are substances that are specifically created and added to photovoltaic films in the production process. These additives are made of grafted silane molecules onto the film’s polymer matrix, forming a covalent connection between the two. This special bonding process improves the characteristics and performance of the film, making it more long-lasting and durable.
- High transparency
- Low crystal point
- High grafting rate
- Good liquidity
- High resistivity
Преимущество
Enhanced Aging Resistance: Silane grafting additives have proven to be incredibly successful in enhancing PV components’ ability to withstand aging. The silane molecules’ covalent interaction with the polymer matrix creates a shield that lessens the deterioration brought on by outside elements like moisture, UV rays, and temperature changes. The PV films’ longevity is greatly increased by this protection, which also guarantees their long-term functionality.
Enhanced Stability: PV films are more stable when silane grafting chemicals are added. By strengthening the bond between the film’s various layers—such as the encapsulant and backsheet—these additives reduce the chance of delamination and moisture infiltration. The PV module’s overall performance and dependability are enhanced by the increased stability.
Enhanced Efficiency: The optical characteristics of photovoltaic films are optimized by silane grafting additives, resulting in increased light absorption and conversion efficiency. These additives improve light trapping within the solar cells by altering the surface roughness and refractive index of the film. This maximizes the usage of incident photons and raises the power output of the module.
Good Compatibility: Silane grafting additives work well with a variety of polymer matrices, including polyolefin and ethylene-vinyl acetate (EVA), which are utilized in the production of PV films. Their interoperability makes it easier to incorporate them into current production processes, guaranteeing a smooth adoption that doesn’t require significant changes to the manufacturing processes or equipment.
Наше преимущество
Глобальная цепочка поставок!
Система цепочки поставок Sound Storage And Logistics
Техническая поддержка
Послепродажная защита
Фокус - Достижение - Превосходство!
Продукция на заказ
Фокус на НИОКР
Глобальные услуги
Сертификация Coace!
Сертификация ISO9001:2015
Сертификация ISO14001:2015
Регистрация в ЕС REACH
Предварительная регистрация на K-REACH в Корее
Преимущество предприятия!
Укладка в стране и за рубежом, прекрасная для смешивания
Схема внутреннего маркетинга
Схема зарубежного маркетинга
Приложение
In the photovoltaic sector, silane grafting additives are widely used, particularly in the production of PV films for solar modules. Encapsulant films, backsheet films, and other protective layers are made with these compounds. They are adaptable for a range of PV applications since they work with several kinds of PV modules, such as crystalline silicon, thin-film, and developing technologies.
Because of these benefits, silane grafting additives are especially useful in applications like utility-scale solar power plants, commercial rooftop solar systems, and off-grid solar systems where aging resistance, stability, and efficiency are crucial. The reliability and performance of PV modules could be greatly enhanced by these additions, allowing for more energy production and lower maintenance costs over the course of the module’s lifetime.