글 찾기
말레산 무수물이 접목된 PPO의 기계적 특성은 순수 PPO에 비해 어떤가요?

High tensile strength, impact resistance, and dimensional stability are just a few of the exceptional mechanical qualities of polyphenylene oxide (PPO), a high-performance engineering polymer. Nevertheless, PPO can be further improved in terms of its mechanical qualities by grafting maleic anhydride, which opens up new application possibilities. In comparison to pure PPO, the mechanical properties of PPO grafted with maleic anhydride are analyzed in detail in this study, emphasizing the benefits made possible by this alteration.


Tensile strength and modulus

When maleic anhydride is grafted onto PPO, these properties usually get stronger. The stiffness of the polymer chain is increased and intermolecular interactions are improved by the presence of maleic anhydride moieties. Compared to pure PPO, this strengthened chain structure has a greater modulus and tensile strength because to its increased stiffness and load-bearing capability.

내충격성

When compared to pure PPO, PPO grafted with maleic anhydride frequently shows better impact resistance. By grafting maleic anhydride, PPO and other polymers become more compatible, which improves stress distribution and energy dissipation during impact events. This increase in impact resistance is especially helpful in situations when the ability to withstand mechanical shocks and vibrations is essential.

Flexural Strength and Modulus

By grafting maleic anhydride, PPO’s flexural strength and modulus can be improved. Maleic anhydride moieties are added to PPO chains to increase interfacial adhesion, which enhances load transmission and resistance to bending stresses. As a result, PPO grafted with maleic anhydride has a greater modulus and flexural strength, which makes it appropriate for uses needing exceptional stiffness and structural integrity.

크리프 저항

PPO’s resistance to deformation under prolonged mechanical stress can be enhanced by grafting maleic anhydride onto the material. By improving PPO’s molecular structure through grafting, the likelihood of chain slippage and creep deformation is decreased. This enhancement is especially beneficial for situations where long-term performance and dimensional stability are essential.

피로 저항

When compared to pure PPO, PPO grafted with maleic anhydride frequently exhibits better fatigue resistance. A longer fatigue life is achieved by the polymer’s resistance to crack initiation and propagation when maleic anhydride moieties are present. This feature is helpful in applications where there is repetitive stress or cyclic loading, including structural parts and automotive components.

Fracture Toughness

Maleic anhydride can be grafted onto PPO to increase its resistance to crack propagation and capacity to bear rapid stresses or impacts. By strengthening the energy dissipation mechanisms inside the polymer matrix, maleic anhydride grafting improves the material’s resistance to fracture propagation and increases its capacity to absorb impact energy. This increase in fracture toughness improves PPO grafted with maleic anhydride’s overall durability and dependability.

In conclusion, compared to pure PPO, PPO grafted with maleic anhydride shows improved mechanical characteristics. Tensile strength, modulus, impact resistance, flexural strength, creep resistance, fatigue resistance, and fracture toughness are all enhanced by the grafting process. Due to these enhancements, PPO grafted with maleic anhydride is now a desirable material for a number of demanding applications, such as those in the industrial, automotive, aerospace, and electronics sectors. By delving deeper into this area, we may better comprehend and apply PPO grafted with maleic anhydride, which will enable it to reach its maximum potential in high-performance engineering applications.

One kind of anhydride-modified polyphenylene oxide (PPO) is Coace®CS-1. PPO is a high-performance engineering plastic with superior mechanical and thermal qualities, such as reduced moisture absorption, outstanding dimensional stability, and strong heat resistance. Reactive carboxylic acid groups are added to the polymer chain of PPO through the anhydride modification. These groups can react with other substances, such polyamides, to generate potent intermolecular linkages. This alteration strengthens the adhesion between layers in a composite material and improves PPO’s compatibility with other materials, especially polar materials like polyamides.

When exceptional mechanical and thermal qualities are needed for composite materials used in automotive, electrical, and electronic applications, Coace®CS-1 is frequently employed as a matrix material. In a variety of industries, it is also utilized in numerous other applications, including housings, connections, and structural components.

최근 기사

나일론 인성 향상을 위해 적절한 POE 접목 무수 말레 산염을 선택하는 방법은 무엇입니까?

특히 보강 및 충진이 필요한 PA6, PA66 및 폴리아미드 시스템을 위한 충격 완화제로 설계된 Coace® W1A-F는 특별한 특성으로 인해 향상된 내충격성과 인성이 가장 중요한 용도에 완벽한 선택이 될 수 있습니다.

자세히 보기 →

PBT 개질의 새로운 돌파구: POE-g-GMA 강화제의 혁신적인 적용

PBT 개질에 POE-g-GMA 강화제를 사용하면 PBT 소재의 취성을 해결할 뿐만 아니라 새로운 플라스틱 산업 발전 방향을 제시할 수 있습니다.

자세히 보기 →

PP/PE 복합 소재에 필러를 추가할 때 호환제를 추가해야 하나요?

PP-g-MAH 호환제의 사용법을 조사하고 싶다면 전문 화학물질 공급업체에 문의하면 샘플과 기술 지원을 받을 수 있습니다. COACE와 상담하면 특정 애플리케이션 요구 사항을 충족하는 맞춤형 믹스를 만들 수 있습니다.

자세히 보기 →

메시지 남기기